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Abstract. A quarkonium–gluonium mixing scheme previously developed to describe the characteristic of
the pseudoscalar mesons is applied to axial and tensor mesons. The parameters of the model are determined
by fitting the eigenvalues of a mass matrix. The corresponding eigenvectors give the proportion of light
quarks, strange quarks and glueball in each meson. However, the predictions of the model for the branching
ratios and electromagnetic decays are incompatible with the experimental results. These results suggest
the absence of gluonic components in the states of axial and tensor isosinglet mesons analyzed here.

1 Introduction

The existence of gluon self-coupling in QCD gives rise
to the possibility of glueball formation. These states may
have the same quantum numbers as those of some quarko-
nia. A signature of gluonium states is that they have no
place in the mesons nonets. If a glueball and one or more
quarkonia with the same quantum numbers have nearly
the same masses these states may interfere and new states
are formed. Thus the physical states formed by gluonia
and quarkonia interference needs a mixing scheme to de-
scribe them. Several kinds of the mixing schemes have
been proposed to give account of the peculiar properties
of these mesons.
In some schemes the physical states are written as lin-

ear combinations of pure quarkonia and gluonia states.
The linear coefficients are generally related to the rotation
angles and may be determined by the decay properties of,
or into, the physical mesons [1–3].
Another approach, in which the interference is con-

sidered at a more fundamental level, consists in writing
a mass matrix for the physical states in the basis of the
pure quarkonia and gluonia states. The elements of this
mass matrix are obtained from a model that describes the
process of interference. The mixtures of the basic states
are induced by the off-diagonal elements. Thus, these el-
ements must contain the amplitudes for transitions from
one to another states of the basis. The eigenvalues of that
matrix give the masses of the physical states and the cor-
responding eigenvectors give the proportion of quarkonia
and gluonia in each meson [4–9].
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In a previous paper we presented a mixing scheme
for the pseudoscalar mesons, based on a mass matrix ap-
proach. The flavor-dependent annihilation amplitudes and
binding energies are the responsible mechanisms for the
quarkonium–gluonium mixing. The properties of the three
lowest energy states of the pseudoscalar isosinglet mesons
η(547), η′(958) and η′′(1410) are well described by a model
based on the assumption that these states are mixtures of
the light quarks, strange quarks and a glueball [10].
The nonet of axial (1++, 13P1) and tensor (2++, 13P2)

mesons are well established [11]. The axial nonet consists
of the isodoublet K1A(1340), the isovector a1(1260) and
the isoscalars f1(1285) and f1(1510). The K1A is a mix-
ture of K1(1270) and K1(1470) with a close to 45◦ mix-
ing angle [12]. The tensor nonet is formed by the isodou-
blet K∗

2 (1430), the isovector a2(1320) and the isoscalars
f2(1270) and f ′

2(1525). Nonetheless, there are extra
isoscalar states with quantum numbers and masses per-
mitting that they can be interpreted as partners of the
nonets of axial and tensor mesons. The axial state
f1(1420), observed in two experiments [13], has been con-
sidered by some authors [14] as a possible candidate to
be exotic. On the other side, there are two candidates to
be exotic tensor states: f2(1640) [15] and fJ(1710) [16].
There is a controversy about the value of the spin of the
fJ(1710): it may be a scalar or a tensor state [17].
In the present paper the candidates to the exotics

f1(1420) and f2(1640), or f2(1710), are supposed to be
components of quarkonium–gluonium mixing schemes
similar to that previously applied to the pseudoscalar
mesons [10]. The same mixing scheme is not applied to
the scalar states because only the assignment for the scalar
isodoublet is well established.
This paper is organized as follows: Sect. 2 outlines a

brief review of the matrix formalism used formerly for the
pseudoscalar mesons. We also fix the notation that will
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be used in the subsequent sections. Section 3 is devoted to
the application of the mass matrix formalism for the three
lowest energy states of the axial mesons. Afterwards, in
Sect. 4, two different mixing configurations for the tensor
isosinglet mesons are considered. In both sections the re-
sults obtained from the mass matrix formalism are used
for calculating some quantities related to branching ratios
and decay widths. Finally, in the conclusion in Sect. 5, the
results obtained are analyzed and confronted with those
ones presented in the literature.

2 The mass matrix formalism

The mass matrix in the basis |uū〉, |dd̄〉, |ss̄〉 and |gg〉,
including flavor-dependent binding energies and annihila-
tion amplitudes, has matrix elements given by

Mij = (2mi + Eij)δij +Aij , (1)

where i, j = u, d, s, g. The contribution to the elements
of the mass matrix are the rest masses of the quarks and
the gluon, the eigenvalues Eij of the Hamiltonian for the
stationary bound state (ij) and the amplitudes Aij , that
account for the possibility of qq̄ ↔ gg ↔ q′q̄′ and qq̄ ↔
gg transitions. As in the previous paper we assume that
Eij and Aij are not SU(3)-invariant quantities. Two other
bases will be used in this paper. The first basis consists of
the isoscalar singlet and octet of SU(3),

|1〉 = 1√
3

(|uū〉+ |dd̄〉+ |ss̄〉) , (2)

|8〉 = 1√
6

(|uū〉+ |dd̄〉 − 2|ss̄〉) . (3)

The second basis is chosen assuming a segregation of the
strange and the nonstrange quarks,

|N〉 = 1√
2

(|uū〉+ |dd̄〉) , (4)

|S〉 = |ss̄〉. (5)

Besides these states we need also the gluonium and the
isovector states,

|G〉 = |gg〉, (6)

|π̃0〉 = 1√
2
(|uū〉 − |dd̄〉). (7)

In these bases the mixing among the isoscalar and isovec-
tor states is caused by isospin symmetry breaking terms.
Therefore, assuming the exact SU(2)-flavor symmetry, one
needs only consider the subspace spanned by the isoscalar
states, when the mass matrix reduces to a 3 × 3 matrix
M0.
The invariants of the mass matrix under a unitary

transformation give the following mass relations for the
isoscalar physical states:

m1 +m2 +m3 = tr(M0), (8)

m1 ·m2 ·m3 = det(M0), (9)

m1 ·m2 +m1 ·m3 +m2 ·m3

=
1
2

[
(tr(M0))

2 − tr (M2
0
)]
, (10)

whereM0 is the 3×3 mass matrix for the isoscalar states,
and mi (i = 1, 2, 3) are their eigenvalues.
The eigenvectors of the mass matrix M0 are the phys-

ical states |m1〉, |m2〉 and |m3〉 which are mixtures of |1〉,
|8〉 and |G〉:
|m1〉 = −c2s1|1〉+ c1c2|8〉 − s2|G〉, (11)
|m2〉 = (c1c3 + s1s2s3)|1〉+ (c3s1 − c1s2s3)|8〉 − c2s3|G〉,

(12)
|m3〉 = (c1s3 − s1s2c3)|1〉+ (c1s2c3 + s1s3)|8〉+ c2c3|G〉.

(13)

The coefficients of the eigenvectors are written in terms
of three Euler angles defining a rotation in a three dimen-
sional space. For brevity, we have defined the notation
ci ≡ cos θi and si ≡ sin θi (i = 1, 2, 3).
The eigenvectors (11)–(13) can also be rewritten in the

basis |N〉, |S〉 and |G〉:
|m1〉 = X1|N〉+ Y1|S〉+ Z1|G〉, (14)
|m2〉 = X2|N〉+ Y2|S〉+ Z2|G〉, (15)
|m3〉 = X3|N〉+ Y3|S〉+ Z3|G〉. (16)

We adopt an expression for the amplitude of the process
qq̄ ↔ gg ↔ q′q̄′ similar to that of Cohen and Lipkin [19]
and Isgur [20], where the numerator of the two-gluon an-
nihilation amplitude expression is assumed to be a SU(3)-
invariant parameter, which means that we parameterize
the annihilation amplitude in the form

Aqq′ =
Λ

mqmq′
. (17)

Analogously the amplitude for the processes qq̄ ↔ gg is
parameterized by

Aqg =
Λg√
mq

. (18)

according to the results of Close et al. [3] and Kühn et
al. [21]. The phenomenological parameters Λ and Λg are
to be determined. There is a parameter relating the bind-
ing energies which is very convenient in this mass matrix
formalism; it is defined by

ε ≡ 1
2
(Euu + Ess)− Eus. (19)

This parameter appears in the formalism when one uses
the basis |1〉, |8〉 and |G〉 (or the basis |N〉, |S〉 and |G〉)
and the mass relation for the non-self-conjugate mesons:

mI=1/2 = mu +ms + Eus, (20)
mI=1 = 2mu + Euu. (21)



W.S. Carvalho et al.: Absence of gluonic components in axial and tensor mesons 175

The mass matrix contains off-diagonal elements involving
not only the annihilation amplitudes but also the break-
ing of the SU(3) symmetry in the binding energies, repre-
sented by parameter ε.
The invariants of the mass matrix are functions of

ms/mu, Λ/m2
u, Λg/m

1/2
u , ε and mG. These quantities are

not all free. Equations (8)–(10) impose some constraints
among them. These equations can be solved for ms/mu,
Λ/m2

u and Λg/m
1/2
u , which are functions of ε and mG.

Fixing the values of ε and mG, the independent param-
eters of the model, all the remaining quantities become
determined.
In the pseudoscalar sector [10] the value ofmG was lim-

ited to the interval between the masses of the pseudoscalar
mesons η and η′, in order to keep the mass matrix Hermi-
tian, because outside this interval Λg becomes a complex
number. For a given value of mG the parameter ε is de-
termined by the minimum of ms/mu, consistent with the
usual values in the nonrelativistic constituent quark mod-
els, which are in the range 1.3–1.8. For the determination
of mG, the remaining free parameter, we searched for the
best values for the data from the branching rations and
from electromagnetic decay widths. We found

ms/mu = 1.772 (22)

and mG = 1300MeV. With those values for ms/mu and
mG we obtained results for the branching ratios and elec-
tromagnetic decay widths involving the η, η′ and η′′
mesons in reasonable agreement with the experimental
data. The value for the pseudoscalar glueball mass is to be
compared with those predicted by other η − η′ − η′′ mix-
ing schemes: 1369MeV [22] and 1302MeV [23]. It must be
observed that the mass of the pseudoscalar glueball given
by our model, similarly to some other mixing schemes is
lower than the mass obtained in the lattice calculations
∼ 2300MeV [24,25]. In fact, there is an incompatibility
between these approaches. In contrast to what is obtained
in lattice results in the quenched approximation, in the
mixing schemes the pseudoscalar glueball is not assumed
to be an isolated physical state. The mass of the glueball
state is obtained simultaneously with the masses of the qq̄
and ss̄ pseudoscalar states that are also components of the
physical states. This is probably the source of the consid-
erable difference between the masses estimated by these
approaches. The ratio ms/mu, fixed by the pseudoscalar
mesons, will be used as an input in the axial and tensor
sectors.

3 Axial mesons

Applying the mixing scheme presented in the previous sec-
tion to the isoscalar axial mesons, we find, after fitting the
eigenvalues to the physical masses, the following eigenvec-
tors:

|f1(1285)〉 = 0.630|1〉+ 0.735|8〉 − 0.250|G〉, (23)
|f1(1420)〉 = −0.391|1〉 − 0.223|8〉 − 0.920|G〉, (24)
|f1(1510)〉 = −0.671|1〉+ 0.677|8〉+ 0.302|G〉, (25)

and

|f1(1285)〉 = 0.964|N〉+ 0.090|S〉 − 0.250|G〉, (26)
|f1(1420)〉 = −0.208|N〉 − 0.332|S〉 − 0.920|G〉, (27)
|f1(1510)〉 = 0.166|N〉+ 0.939|S〉+ 0.302|G〉. (28)

These results suggest that f1(1285) has 93% of |N〉,
f1(1420) has 85% of |G〉 and f1(1510) has 88% of |S〉. The
independent parameters of the model, corresponding to
these eigenvectors, are ε = 25MeV and mG = 1430MeV.
The remaining parameters are Λ/mu = 32.4MeV and
Λg/m

1/2
u = 0.79MeV.

The ratio of J/ψ radiative branching ratios into
f1(1420) and f1(1285) and the ratio of the two-photon
width of f1(1420) and f1(1285) are given by [18]

B(J/ψ → γf1(1420))
B(J/ψ → γf1(1285))

=

(√
2X2 + Y2√
2X1 + Y1

)2(
p1

p2

)2

=
0.85± 0.25

B(f1(1420)→ ηππ)
, (29)

Γγγ(f1(1420))
Γγγ(f1(1285))

=

(
X2 +

√
2

5 Y2

X1 +
√

2
5 Y1

)2(
M(f1(1420))
M(f1(1285))

)2

=
0.34± 0.18

B(f1(1420)→ KK̄π)
, (30)

where X and Y are the mixing coefficients appearing in
(14) and (15) and the labels 1 and 2 stand for f1(1285)
and f1(1420), respectively. Our results for those ratios are
shown in Table 1 and are to be compared with experimen-
tal data.

4 Tensor mesons

The same approach used in the last section is now applied
to the tensor mesons. If we consider the candidate to exotic
f2(1640) as the partner of the tensor nonet, the resulting
mixtures are

|f2(1270)〉 = 0.786|1〉+ 0.480|8〉 − 0.390|G〉, (31)
|f ′

2(1525)〉 = 0.319|1〉+ 0.598|8〉 − 0.801|G〉, (32)
|f2(1640)〉 = −0.642|1〉+ 0.618|8〉+ 0.454|G〉. (33)

On the other hand, we can also consider that it is the
f2(1710) that is mixing with the other tensor isosinglets.
In this case we obtain

|f2(1270)〉 = 0.360|1〉+ 0.634|8〉 − 0.684|G〉, (34)
|f ′

2(1525)〉 = 0.746|1〉+ 0.175|8〉+ 0.580|G〉, (35)
|f2(1710)〉 = −0.487|1〉+ 0.753|8〉+ 0.442|G〉. (36)

Changing to the basis |N〉, |S〉, |G〉 we find that
|f2(1270)〉 = 0.919|N〉+ 0.062|S〉 − 0.390|G〉, (37)
|f ′

2(1525)〉 = 0.371|N〉 − 0.470|S〉 − 0.801|G〉, (38)
|f2(1640)〉 = 0.134|N〉+ 0.881|S〉+ 0.454|G〉, (39)
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Table 1. Branching ratios and electromagnetic decay widths involving the
f1(1285), f1(1420), f2(1270) and f2(1525). The results for tensor mesons were
obtained in view of f2(1640) or f2(1710) as member of the tensor nonet: The
results in parentheses refer to f2(1710). Our results are compared with the ex-
perimental data

Observable Our model Experiment [11]

B(J/ψ → γf1(1420))/B(J/ψ → γf1(1285))) 0.16 1.7–8.5

Γγγ(f1(1420))/Γγγ(f1(1285))) 0.13 0.34–0.68

B(J/ψ → γf ′
2)/B(J/ψ → γf2(1270))) 0.0012 (0.06) 0.19

B(f ′
2 → ππ)/B(f ′

2 → KK̄)) 17 (127) 0.096

and

|f2(1270)〉 = 0.726|N〉+ 0.072|S〉 − 0.684|G〉, (40)
|f ′

2(1525)〉 = 0.602|N〉 − 0.549|S〉+ 0.580|G〉, (41)
|f2(1710)〉 = 0.336|N〉+ 0.833|S〉+ 0.442|G〉. (42)

The independent parameters of the model which give the
first set of eigenstates, f2(1270), f ′

2(1525) and f2(1640),
are ε = 52MeV and mG = 1510MeV. The remaining pa-
rameters are Λ/m2

u = −1.0MeV and Λg/m
1/2
u = 4.6MeV.

The main content in these states is 85% of |N〉 in f2(1270),
64% of |G〉 in f ′

2(1525) and 78% of |S〉 in f2(1640).
The second set of eigenstates correspond to the follow-

ing parameters, ε = −5.0MeV, mG = 1444MeV, Λ/m2
u =

4.8MeV and Λg/m
1/2
u = 11MeV. The dominant contri-

bution to each state of the second set is 53% of |N〉 in
f2(1270) and 69% of |S〉 in f2(1710). The states |N〉, |S〉
and |G〉 contribute almost with the same proportion to
the f ′

2(1525).
The ratio of J/ψ radiative branching ratios into

f2(1270) and f2(1525) and the ratio of f(1525) branch-
ing ratios into ππ and KK̄ are given by [18]

B(J/ψ → γf ′
2)

B(J/ψ → γf2(1270))
=

(√
2X2 + Y2√
2X1 + Y1

)2(
p2

p1

)3

, (43)

B(f ′
2 → ππ)

B(f ′
2 → KK̄)

=
3X2

2

2
(

X2√
2
+ Y2

)2

(
pπ

pK

)5

. (44)

Here X and Y are the mixing coefficients appearing in
(14) and (15) and the labels 1 and 2 refer to f2(1270)
and f ′

2(1525), respectively. Our results for those ratios are
shown in Table 1 and are to be compared with experimen-
tal data.

5 Conclusion

Birkel and Fritzsch [9] have used SU(3)-invariant annihila-
tion amplitudes in a quadratic mass matrix formalism for
describing the mixing in the axial sector. They found that
the candidate to exotic f1(1420) has a gluonic content of
58% and the gluonic component with a mass of 1432MeV.

These results are to be compared to the ones found in our
mixing schemes. We found a gluonic content of 85% in the
f1(1420) and a gluonic component at 1430MeV.
In the tensor sector we found that the f2(1270) could

be mainly an |N〉 state. Nevertheless, we found that the
candidate to exotic f2(1640) is predominantly a |S〉 state,
whereas the f ′

2(1525) is mainly a |G〉 state. These results
are in contrast with those found in the literature that in-
dicate the f ′

2(1525) and f2(1640) are mainly |S〉 and |G〉
states, respectively [2,6–8]. Our results were obtained for a
gluonic component at 1510MeV. On the other side, if the
physical state is the f2(1710) we found that it is mainly
a |S〉 state and f ′

2(1525) is nearly an equiprobable distri-
bution among |N〉, |S〉 and |G〉. For this set of eigenstates
a gluonic component at 1444MeV was obtained. In the
first set of eigenstates, the mass of the gluonic compo-
nent is comparable to the mass found in the range 1536–
1590MeV obtained by other mixing schemes [5].
Here, as in the case of the pseudoscalar sector, we have

obtained masses for a glueball state lower than the one ob-
tained in the quenched lattice (∼ 2000–2300MeV) [25,26].
The source of the substantial difference among the masses
is probably the same as that in the case of the pseudoscalar
mesons: The mass of the glueball states in the mass ma-
trix formalism is obtained regarding the glueball as being
a component of a physical state, whereas in the lattice
calculations the glueball is a physical state itself. Nev-
ertheless, the results given by the present quarkonium–
gluonium mixing scheme for branching ratios and elec-
tromagnetic decay widths involving the axial and tensor
mesons f1(1285), f1(1420), f2(1270) and f2(1525) are in
clear contradiction with the experimental ones. The theo-
retical and experimental results are compared in Table 1.
These results show that the quarkonium–gluonium mix-
ing model, which works well for scalar isosinglet mesons
[10], is not compatible with the constraints coming from
decays concerning the axial and tensor isosinglet mesons
considered in this work.
The incompatibility above mentioned is a clue that the

presence of gluonic components in the axial and tensor
isosinglet meson states considered here may be a wrong
assumption. On the other hand the interpretations of the
states f1(1420), f1(1510), f2(1640) and fJ(1710) are con-
troversial and, moreover, some of them need confirmation
[11].
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